

ISSN: 2277-9655 Impact Factor: 4.116



# INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

STRUCTURAL INTEGRITY AND OPTIMIZATION OF WELDED STRUCTURE

### Abhishek C Shinkar, Ganesh D Ghuge

Department of Mechanical Engineering, Pune University, India

#### DOI: 10.5281/zenodo.56971

### ABSTRACT

Almost all operation in any industry requires welding. It is indispensable to enhance the various parameters of welding process so that good quality of structure will be obtain which will be reliable and have good strengthening properties. The welding process parameters such as electrodes, inert gas, current, voltage etc. are being focused by industries. In this research paper we have find the optimum current for electrodes mostly use in industries as the industries now a days are preferring for high quality product in lower cost. ARC Welding is old and commonly used for joining the two metal. The study is carried out to investigate the influence of welding speed, groove angle, Current and Voltage on strength of mechanical properties such as tensile test, impact test. Mechanical testing are carried out to find out the mechanical properties of butt weld joint.

#### Keywords: Arc welding, Butt weld, Current, Electrodes.

#### **INTRODUCTION**

Arc welding process that is being widely used in industry for sheet joining purposes. There are many applications of welding made of carbon steel such as Fencing or Railing done in Ghats, bridge structure, shipbuilding, pressure vessels etc. are subjected to various stresses such as tensile, compressive and thermal stresses etc. Structural integrity of large engineering structures presents a unique challenge in the production of safe and cost-effective means of analysis, inspection and rehabilitation.

#### 1.1. Objectives of This Research

Determination of structural strength of welded structures, obtain the good quality welding and to obtain results by FEA method also to reduce the residual stresses and fatigue.

#### FINITE ELEMENT ANALYSIS

### 2.1. Thermal - Mechanical Analysis (Thermomechanical)

In mechanical analysis, the basic equations are the equilibrium equations, constitutive stress–strain relations and geometric compatibility equations. The change in the temperature distribution contributes to the deformation of the body through thermal strains and influences the material properties.

#### 2.2. Calculation for Temperature:

For the Finite Element Analysis, the temperature is being required so the temperature is calculated theoretically by using the formula of heat input.

http://www.ijesrt.com



[Shinkar\* et al., 5(7): July, 2016] **ICTM Value: 3.00** 

### **ISSN: 2277-9655 Impact Factor: 4.116**

тСр

Hence, by using above formula eq. (c) the temperature for each plate is calculated and temperature for each plate is as follows. •

..... (c)

| Ter | np for | E6013 | Specimen. |
|-----|--------|-------|-----------|
|     |        |       |           |

| Sr. No | Current | Voltage | Time | Temperature |
|--------|---------|---------|------|-------------|
| 1      | 100     | 20      | 33   | 527         |
| 2      | 105     | 20      | 33   | 554         |
| 3      | 110     | 20      | 33   | 580         |
| 4      | 115     | 20      | 33   | 605         |
| 5      | 120     | 20      | 33   | 632         |
| 6      | 125     | 20      | 33   | 659         |

Table. No. 1: Temp. for E6013 Specimen

### Temp for E7016 Specimen.

| Sr. No | Current | Voltage | Time | Temperature |
|--------|---------|---------|------|-------------|
| 1      | 115     | 20      | 30   | 552         |
| 2      | 120     | 20      | 30   | 576         |
| 3      | 125     | 20      | 30   | 602         |
| 4      | 130     | 20      | 30   | 624         |
| 5      | 135     | 20      | 30   | 645         |
| 6      | 140     | 20      | 30   | 670         |

Table. No. 2: Temp. for E7016 Specimen

### Temp for E7018 Specimen.

| Sr. No | Current | Voltage | Time | Temperature |
|--------|---------|---------|------|-------------|
| 1      | 150     | 20      | 30   | 720         |
| 2      | 155     | 20      | 30   | 742         |
| 3      | 160     | 20      | 30   | 770         |
| 4      | 165     | 20      | 30   | 794         |
| 5      | 170     | 20      | 30   | 818         |
|        |         |         |      |             |
| 6      | 175     | 20      | 30   | 842         |

Table. No. 3: Temp for E7018 Specimen.

### 2.3. Simulation Results for Electrode E6013:

| Sr. No. | Plate Coding | Min. Min. Equival |        | Remark    |
|---------|--------------|-------------------|--------|-----------|
|         |              | Shear Stress      | Stress |           |
| 1       | A100         | 78.15             | 149.94 | _         |
| 2       | A105         | 95.56             | 174.64 | _         |
| 3       | A110         | 103.12            | 183.01 | Optimized |

http://www.ijesrt.com

© International Journal of Engineering Sciences & Research Technology



## ISSN: 2277-9655 Impact Factor: 4.116

| 4 | A115 | 96.60 | 170.08 | _ |
|---|------|-------|--------|---|
| 5 | A120 | 89.59 | 156.05 | _ |
| 6 | A125 | 82.60 | 143.43 | _ |

Table. No. 4: Simulation Results for E6013

### 2.4. Simulation Results for Electrode E7016

| Sr. No. | Plate Coding | Min.         | Min. Equivalent | Remark    |
|---------|--------------|--------------|-----------------|-----------|
|         |              | Shear Stress | Stress          |           |
| 1       | B115         | 94.27        | 172.73          | _         |
| 2       | B120         | 104.16       | 185.11          | Optimized |
| 3       | B125         | 97.38        | 171.62          | _         |
| 4       | B130         | 91.66        | 160.48          | _         |
| 5       | B135         | 86.22        | 150.14          | _         |
| 6       | B140         | 79.76        | 138.29          |           |

Table. No. 5: Simulation Results for E7016



Fig. no. 3- Shear stress of B120

#### 2.5. Simulation Results for Electrode E7018

| Sr. No. | Plate Coding | Min.<br>Shear Stress | Min. Equivalent<br>Stress | Remark    |
|---------|--------------|----------------------|---------------------------|-----------|
| 1       | C150         | 66.95                | 116.67                    | Optimized |
| 2       | C155         | 61.37                | 108.38                    | _         |
| 3       | C160         | 54.36                | 99.32                     | _         |
| 4       | C165         | 48.44                | 93.24                     | _         |
| 5       | C170         | 45.52                | 89.05                     | _         |
| 6       | C175         | 46.56                | 86.99                     | _         |

Table. No.6: Simulation Results for E7018



[Shinkar\* et al., 5(7): July, 2016] **ICTM Value: 3.00** 

**ISSN: 2277-9655 Impact Factor: 4.116** 



Fig. no. 4- Shear stress of C150

### **EXPERIMENTAL VALIDATION**

The Experimental result are for a Single-V butt weld joint of the dimensions (300 x 40 x 5 mm). The mechanical properties of the weld material and base material are shown in table above.

|         | Table 1. Chemical composition of base material |         |       |            |              |          |          |  |
|---------|------------------------------------------------|---------|-------|------------|--------------|----------|----------|--|
| Element | Carbon,                                        | Copper, | Iron, | Manganese, | Phosphorous, | Silicon, | Sulphur, |  |
|         | С                                              | Cu      | Fe    | Mn         | Р            | Si       | S        |  |
| Weight  | 0.25-                                          | 0.20    | 98.0  | 1.03       | 0.040        | 0.280    | 0.050    |  |
| Max. %  | 0.290                                          |         |       |            |              |          |          |  |

Table 1 Chemical composition of base material



Fig no.5 - Actual specimen

### **EXPERIMENTATION**

As we know welding parameter affects the strength of welding we have find the best suitable current for each electrode so we tested on 3 electrodes. There are 18 numbers of specimens were prepared from arc welding process. The first 6 specimens of E6013 electrode at six different values of welding current (specimen code A100 at 100 amps., A105 at 105 amps., A110 at 110 amps., A115 at 1115 amps., A120 at 120 amps., A125 at 125 amps) similarly another 6 of E7016 electrode (specimen code B115, B120, B125, B130, B135, B140) and remaining 6 of E7018 electrode (specimen code C150, C155, C160, C165, C170, C175) were prepared.

### 4.1. Electrode - 6013 (E-6013)

6013 is a high titanic coated electrode. Its Working Current Range is 100 Amp - 140 Amp. **Chemical Composition of E-6013** 

http://www.ijesrt.com

© International Journal of Engineering Sciences & Research Technology [247]



## ISSN: 2277-9655 Impact Factor: 4.116

| Element | С          | Mn        | Si       | Р        | S        |
|---------|------------|-----------|----------|----------|----------|
| Weight  | 0.08 0.05- | 0.45 0.3- | 0.25     | 0.03 max | 0.03 max |
| Max. %  | 0.10       | 0.60      | 0.30 max |          |          |

#### **Results for E-6013 conducted on UTM**

| Sr.<br>No. | Specimen<br>code | Breaking Load<br>(KN) | Remark         |
|------------|------------------|-----------------------|----------------|
| 1          | A100             | 68.5                  | Breaks at weld |
| 2          | A105             | 72                    | Breaks at weld |
| 3          | A110             | 78                    | Breaks at weld |
| 4          | A115             | 75.5                  | Breaks at weld |
| 5          | A120             | 73                    | Breaks at weld |
| 6          | A125             | 71                    | Breaks at weld |

#### 4.2. Electrode – 7016 (E-7016)

7016 is a basic coated low hydrogen electrode suitable for welding heavy structures, high tensile strength jobs where impact strength at sub-zero temperatures are required Working Current Range is 110 Amp - 150 Amp.

### Chemical Composition of E-7016

| Element | С        | Mn         | Si        | Р        | S        |  |
|---------|----------|------------|-----------|----------|----------|--|
| Weight  | 0.09 max | 1.10 0.8 - | 0.54      | 0.03 max | 0.03 max |  |
| Max. %  |          | 1.5        | 0.25-0.65 |          |          |  |

#### **Results for E-7016**

| Sr. | Specimen | Breaking Load | Remark         |
|-----|----------|---------------|----------------|
| No. | code     | (KN)          |                |
| 1   | B115     | 82            | Breaks at weld |
| 2   | B120     | 93            | Breaks at weld |
| 3   | B125     | 77.5          | Breaks at weld |
| 4   | B130     | 76            | Breaks at weld |
| 5   | B135     | 72            | Breaks at weld |
| 6   | B140     | 68            | Breaks at weld |

### 4.3. Electrode - 7018 (E-7018)

E7018 stick electrodes are a good choice for structural steel applications due to their smooth, stable and quiet arc, and their low spatter levels. Its **Working Current Range is between 140** Amp – 180 Amp

#### Chemical Composition of E-7018

| Element       | С        | Mn          | Si       | Р        | S        |
|---------------|----------|-------------|----------|----------|----------|
| Weight Max. % | 0.10 max | 0.90 - 1.40 | 0.75 max | 0.03 max | 0.03 max |

http://www.ijesrt.com



## ISSN: 2277-9655 Impact Factor: 4.116

#### **Results for E-7018**

| Sr. | Specimen | Breaking Load | Remark         |
|-----|----------|---------------|----------------|
| No. | code     | (KN)          |                |
| 1   | C150     | 78            | Breaks at weld |
| 2   | C155     | 76.5          | Breaks at weld |
| 3   | C160     | 70            | Breaks at weld |
| 4   | C165     | 68.5          | Breaks at weld |
| 5   | C170     | 65            | Breaks at weld |
| 6   | C175     | 66.5          | Breaks at weld |

### **RESULTS**

### 5.1. FOR SPECIMEN of E6013

| SPECIMEN             | A100  | A105  | A110   | A115  | A120  | A125  |
|----------------------|-------|-------|--------|-------|-------|-------|
| FEA (shear stress)   | 78.15 | 95.56 | 103.12 | 96.60 | 89.59 | 82.60 |
| EXPERIMENTAL<br>(KN) | 68.5  | 72    | 78     | 75.5  | 73    | 71    |



Hence, from the graph and the result table we can conclude that the specimen with current of 110 Amp i.e. A110 has the highest load bearing capacity

### 5.2. FOR SPECIMEN of E7016

| SPECIMEN             | B115  | B120   | B125  | B130  | B135  | B140  |
|----------------------|-------|--------|-------|-------|-------|-------|
| FEA (shear stress)   | 94.27 | 104.16 | 97.38 | 91.66 | 86.22 | 79.76 |
| EXPERIMENTAL<br>(KN) | 82    | 93     | 77.5  | 76    | 72    | 68    |

http://www.ijesrt.com



ISSN: 2277-9655 Impact Factor: 4.116



Hence, from the graph and the result table we can conclude that the specimen with current of 120 Amp i.e. B120 has the highest load bearing capacity

#### 5.3. FOR SPECIMEN of E7018

| I ORDI BOIMBICOI BIC |       |       |       |       |       |       |  |
|----------------------|-------|-------|-------|-------|-------|-------|--|
| SPECIMEN             | C150  | C155  | C160  | C165  | C170  | C175  |  |
| FEA (shear stress)   | 66.95 | 61.37 | 54.36 | 48.44 | 45.52 | 48.44 |  |
| EXPERIMENTAL<br>(KN) | 78    | 76.5  | 70    | 68.5  | 65    | 66.5  |  |



Hence, from the graph and the result table we can conclude that the specimen with current of 150 Amp i.e. C150 has the highest load bearing capacity

http://www.ijesrt.com

© International Journal of Engineering Sciences & Research Technology [250]



### ISSN: 2277-9655 Impact Factor: 4.116

### CONCLUSION

- Optimized result are been obtained for the three different type of electrode i.e. E6013, E7016, E7018. And for each electrode a fixed value of current is been obtained on which high strength generated.
- 3D FE model has been developed to simulate the arc welding process to find the optimized specimen for a specific current by using FEA software and validated the results by experimental procedure.
- The specimens whose results were obtained by Finite Element Analysis were same as that of the results obtained by experimental procedure.
- Hence by using proper parameters we can achieve good quality of welding with a high strength. And rather than doing actual experiment we can get the results by FEA software.

### REFERENCES

- Prof. Rohit Jha1, Dr. A.K. Jha "Influence of Welding Current and Joint Design On the Tensile Properties of Smaw Welded Mild Steel Joints" Mewar University, Gangrar Chittorgarh (Rajasthan) 2chief Scientist Ampri, Bhopal (M.P.)
- 2. G. Mi, C. Li, Z. Gao, D. Zhao, J. Niu "Finite Element Analysis of Welding Residual Stress of Aluminum Plates Under Different Butt Joint Parameters, Engineering Review, Vol. 34 Issue 3, 161-166, 2014.
- 3. K. Brahma Raju "Optimization of Weld Penetration Problem in Butt Welded Joints Using Stress Concentration Factors and Stress Intensity Factors"
- Vishnu V., N Adeera, Joy Varghese V. "Numerical Analysis of Effect of Process Parameters On Residual Stress in A Double Side Tig Welded Low Carbon Steel Plate" Iosr Journal of Mechanical and Civil Engineering (Iosr-Jmce) E-Issn: 2278-1684, P-Issn: 2320-334x.
- 5. K. Y. Benyounis and A. G. Olabi "Optimization of Different Welding Processes Using Statistical and Numerical Approaches" School of Mechanical and Manufacturing Eng. Dublin City University, Dublin, Ireland.